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Abstract: The flow of a liquid in a system of parallel cylinders arranged 
perpendicularly to the flow is considered for sm all Reynolds numbers. 

Comparison of the exact solution for square and hexagonal arrays 
with the solution obtained by means of the cell model established that 
inthe case of an array the method proposed by Kuvabara [1] makes it 
the flow velocity over a single cylinder to be correctly calculated. 
However, the form of the streamlines depends essentially on the 
geometry of the array. 

1. The cell model and the Oseen solution. In [1,2], the problem 
of tire flow of liquid around a finite system of spatially uniformly 
arranged cylinders is considered by means of the so-called cell model. If 
each of the cylinders of radius o is surrounded by an imaginary coaxial 
cylinder whose radius b is given by the relation ~rb 2 n = 1 (n is the 
number of cylinders per unit cross-sectionalarea), it is assumed that 
the choice of the shnplest, physically plausible boundary conditions 
at the surface of the outer cylinder does not significantly alter the 
velocity field close to the inner cylinder: The groundlessuess of such 
an assumption is obvious ~ven in the comparison of the results from 
[1,2j, 

hi Kuabarsa' [ I ] ,  in a reference system where the liquid at  in- 
finity is at rest, the vortex' as we11 as the radial component of the 
velocity of motion of the liquid, vanish on the surface of a cylinder of 
radius b. The last assumption means that the streamlines far from the 
cylinder approximate circles. Concerning the first assumption, we 
must point out that, for exampie, it is valid for a hexagonal array only at 
six points on a circle of a radius equal to the half-period of the array. 
This can be easily seen from considerations of symmetry. 

The solution of the Stokes equations in dimensionless polar 
coordinates r,O, with the origin of the coordinates on the axis of the 
cylinder and the boundary conditions for the velocity components 
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leads to the following expression for the stream function: 
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where ~ = a 2 / b  2 is the fraction of the volume occupied by cylinders 
(r is the distance to the axis of the cylinder; 0 is the angle between the 
radius vector r and U).* 

Happel [2] assumes that in a reference system where the liquid at 
infinity is at rest, the radial velocity component and the component of 
the tensor of Viscous stresses are both zero on the s~trface of a cylinder 
of radius b. Thus, in a referencesystem connected withthe axis of some 
cylinder, the following boundary conditions 

v r =  v o ~ 0 for r = a and v e : U cos 0 for r = b (1.3) 

must be satisfied. 

* Because of a misprint formula (1.2) in [1] is represented in a 
distorted form which was corrected in [8]. 

In this case, the stream function 
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Only in the limiting case as ~ -+ 0 do formulas (1.2), (1.4), and 
the Oseen solution for the problem [4] of flow around a single cylinder 

(r, O) = 

UasinO /ln "r k l \ - l [ a ~ r  r 
2 \ " ~ - a - - 7 ) / , 7 - - ~ - + 2 - a - l n T ]  (1. i)  

leads to the same streamlines(y = 1.78; k = U[2 p; v is the kinematic 
viscosity.) 

Thus, the question concerning the choice of boundary conditions 
in the celI method, purporting to give a correct description of the 
velocity field cIose to the surface of the cylinder (although with 
aecuracty to terms of order s), still remains open. In this connection, 
it is interesting to investigate the exact solution of the Stokes equations 
for a doubly periodic region. In the paper by Hasimoto [5], the problem 

concerning the flow of a viscous liquid through a doubly periodic 
system of cylinders passing through the nodes of a square array, is 
considered with the application of Fourier series. We calculate force 
acting on a cylinder when s is small. But no expression is presented 
in [5], for the velocity field close to the vicinity of the cylinder. This 
is necessary, for example, for the calculation of the diffusion flow 
on the surface of the cylinder. 

The problem of the flow of a viscous liquid in a doubly periodic 
system of cylinders is solved here by means of the theory of eIliptic 
functions [6]. The axes of the cylinders pass through the nodes of a 
two-dimensional array; the periods of this array can be expressed by 
the nmnbers 2w 1 and 2w 2 in the complex plane, where w 1 = c51 and 
w2 = 1r q0 (the bar denotes the operation of complex conjugation). 
The calculation of the velocity field for w 1 = [w2[ is carried out for 
the two particular cases: ~o= 7rl/2 and ~0= 7r 1/3. Here it is assumed 
that the liquid flow velocity U, averaged across the section, is 
parallel to one of the periods of the array. 

2. The Stokes equations and their general solution. In a plane per- 
pendicular to the axis of the cylinders we choose Cartesian (x,y) 
coordinates so that the origin coincides with the center of some 
cylinder, while the (reaI) x axis coincides with the flow direction. 

Let v x and Vy be the x and y components of the liquid flow veloc- 
ity vector; let g be the dynamic viscosity, and let p be the pressure. 

The two-dimensional Stokes equations and the equal;ion of con- 
tinuity are written ill the form 

Op Op 
Oz - -  t~Av~, O~ : IxAr'v' 

Oz,x Ore (A = 0~" 0~" 
o~ + ~ - y =  o, _ ~ + ~ ) .  (2.1) 

On the surface of each cylinder, 
v ~ =  % = 0 ,  (2.2) 

The rate of flow of liquid through the cell is assumed to be given: 

I ~% ] sia 

S rx(O,y) dy = U ] sin (0 2 I 
(2.3) 

a 

Eliminating the pressure p from Eqs.(2.1), we obtain 

Ar o, ~00= O v v l O x - - O v x / o g ,  (2.4) 
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where to o is the vor t ic i ty  of the l iquid ,  which in the case under 

considerat ion is a rea l  function of the coordinates  (x ,y )  as we l l  as of the 

parameters  U, w t, and I coal. In conformi ty  with the method of 

functions of the complex  va r i ab le  (see [7], for example ) ,  we go 

over to t h e n e w v a r i a b l e s  z = x + iy  z = X - i y  and introduce the  

complex  ve loc i ty  co = rex- ivy .  Then Eqs. (2 .4)  are wri t ten  in the 
form 

O%~o/O': 02 : O, 0)0 - -  2i Ow/O~. (2 .5)  

An analogous method was used by Miyag i  [8] in consider ing the 

problem of viscous flow through an in f in i t e ,  s ingly  per iodic  array 

of cyl inders ,  whose axes l i e  in a p lane  pa ra l l e l  to the ve loc i ty  U 

of the imp ing ing  flow. From Eq. (2 .5)  i t  follows tha t  coo = G(z) + 

+ F(~), where G(z) and F(~) are ana ly t i c a l  fimctions of z and ?, 
r espec t ive ly .  Since w 0 = c~ 0, where F(~) ='G(Z)= ~(~-), 

0)0 = n (z) + G ( ~ .  ( 2 . 6 )  

The ve loc i ty  f ield is symmet r i c  wi th  respect  to substi tution of 

z and [ b y - z  a n d - [ .  Therefore,  coo (z, 5) = - co0 ( - z  , - -g)and,  hence,  
ga (z) = -f2 ( - z ) .  From formula (1.5) we cal l  see that  the Laurent 
expansion for coo, w i t h s m a l l r ,  begins wi th t e rms  of order a / r .  Then,  the 

doubly per iodic  function on0 is sought in the  form of a series con ta in ing  
the Weierstrass ~ - funct ion  and its even �9 order der iva t ives .  We wri te  
~ ( Z )  in the  form 

co 

. . . .  %~;(v)(:) , 

where 6 (z, 26~ I, 2co2) is a g-functions with the period 2wi, 2co2, ~[ = 

: { (coi) li = 1,2). In the region z << nlax (co1,]~zziI:he6-fuuction can 

be represented ill the form of the series 

{ (z; 2(%, 2(%) = l l z  - -  g~z ~ - -  g~z ~ - -  . . . ,  

g'2~E~,nn -4 , ~ 3 =  E ~ rnn  - 8 .  

~T~, n m, 71, 

tIere ~qmu = 2ngo~ + 2ncoz; summat ion  is extended to a l l  integer  
vaInes of m and n, with tile excep t ion  of m = n = o  

By vir tue of the symmet ry  of the array r e l a t i ve  to the p lane  y = 0, 
the qnant i t ies  gz and ga are rea l ,  and cousequent ly~-(z)  = { (z ) .  

Vurd~ermore, from the same considerat ion% it  follows dmt  the 

coeff ic ients  a o and a2k are r ea l ,  s ince 

COo (z,-~) = -0 )0  (~, ~), ~ (z) - -  " 9  (~), 

Thus 

~o(z,~)=~- ao ~ ( z ) - - ~ ( 5 )  _ ( z - - ~ ) +  
0)2 - -  0)2 

2I, 
l , = l  1,=1 

Prom (2 .8) ,  with ( 2 . 5 ) t a k e n  into account ,  we find that  

( 2 . 8 )  

2w { ) 
U - - a ~  in  z (z) - -  ~ (z) - -  ~I~--~.0 [~ 

0)~_~ \ 2 - - z ~  . -- 

oo co 

- -2E a;,',~(2:'>(z>@ E a;l,C(2:'-l)(5)--Lq)(z) }, ( 2 . 9 )  

where o (z; 2w. ,2c~) i s  the Weierstrass s igma- func t ion  with the periods 
2col and 2w~, g i v e n b y  the equa t ion  (d! dz) i n  o(z) = g(z),  whi l e  ~(z)  

is an arbi trary ana ly t i c  function of z. However,  ce r t a in  restr ict ions 
associated with the double  per iod ic i ty  and l i m i t a t i o n s o f t h e v e l o c i t y  
field must  be  imposed on our arbi trary cho i ce  of ff (z).  To find a sui t -  

ab le  O(z) we d i f fe ren t ia te  (2 .9)  with respect  to z. Then, 

"2 Ow 
Z(z, ~ ) :  - -  gA (z) - -  (D" (z), Z(z, 5 ) =  U Oz ' 

A (z) ao{" (z) - -  ao - - -  + / '  (=), 
0]o  - -  0 )~  

co 

Since 

X (z + 20)~, ~ + 2~{) = X (z, ~) ( i  = t,2), 

then 

q)' (z + 2m~) -- qv (z) = 

= 2% A (z), q)' (z + 2%) -- (I)' (z) = 2 ~  A (z) .  

Hence 

q ) ' ( z ) =  {z  § .%72 (0)~ _~)[~o~(z)_mzl},X(z)_~_ 

(2.10) 

Here D2k are constants.  It is easy to show that ~(z) chosen in such 

a manner  is unique,  and accura te  to an arbitrary odd e l I ip t ic  function 

having a s ingte pole of any order above the second at points comparab le  
with z = 0, 

Integrat ing (2 .10) ,  we obtain 

q) (z j  = ao t in  z (z) § ~;2 (z) w ~ 6 )  - ~7~ ~1 - 

co 

(o~ 2r h 

~ -- il. ~ 

T-- ---" (2. • 

Here b2h and K are constants.  

Thus, the solution of the Stokes equations (2.1)  cau be sought in 
the form 

'~to 
- /?-  = ao {in ~ (5) + In ~ (z) + [gz --  5 -- ~{ (z)] ~,(o)--" - 

- ~, (~z "~ - -  2z~ T 5")} + 

O.~ r 

k=l k=l 

co co 

+ ~ c0,,'~(2~, l) (~) ~ 2~ ~ %, "~ (~) ~<~,) (~) + r<. 
1,=t i .~1 

The coeff ic ients  azk' ,  c2k', and K are de te rmined  from the boundary 
condit ions (2.2) and (2.3). 

For the case in whici1 c~ = - w i ,  we can obtain an asymptot ic  

expression of the genera l  solution (2 .12)  where w t >> I~ : [ ,  The result  

thus obta ined corresponds to the genera l  form of the solution for the 
singly periodic array of cyl inders  g iven  in [8]. 

3. Square and hexagona l  arrays. Let i cozl = w 1 : co, i . e . ,  coz = 

= Wei~ The symmet ry  requ i rement  of the v e l o c k y  field r e l a t ive  to the 
rea l  axis 1ends to the fact  that  only the values ~o= rr2 and r = rr3 are 

permiss ible ,  i . e . ,  when they correspond to arrays with e l e m e n t a l  
ce l l s  in the form of a square or a rhombus with an angle  of 60 degrees.  
In these cases, d i rec t ly  from the def ini t ion of the ~-funet ion,  we can 
der ive  the relat ions 

1li -- fiT, t]._ = / ]1  s -% = rlie .iv . (3. i) 

Since Nr COeig~-~Jz co : % f 2  from (3.1) we obtain 

2o)2 
rh ,=  4a~sin(p ' u ~  ~ s i n %  
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8 = 0 ,  7 = - -  8m'-' sin q~ ' (3.2)  

With this result taken into consideration, we write expression 
(2.12) as:follows: 

9/o 
= a0 | l n a ( a )  + lna (u)  + U 1_ 

sin r 

oo co co 

- E ao, e + E + E + 
~=i .=i l.=l 

co 
sin ~p ~(2,', ) 

+ - - 7 -  ~ % ~ (u) (u) + K. 
h =1 

(3.3) 

Elliptic functions of the new variable u = z/2W, allowing the 
transformation from functions with period 2w, 2We i~ to functions with 
period 1, eig, enter (3.8): 

1 
~(z; 2o) 2o)eiV)==~-~(u;  i ei~), 

Ins (z ;  2o), 2o )e i r  1, ei~). 

The constants in formulas (2.12) and (3.3) are associated with d:e 
relations 

a~k = %~' / 2(o)) ~: and c~;~ = %~' / (20)) ~k 

Owing to the double periodicity of the velocity field, boundary 
conditions (2.2) are adequately specified on the surface of any single 
c y l i n d e r : w =  0 f o r ] z ]  = a o r  z ~ = a  2,i .e. ,  for fi =t21 u(t = a [ 2 w ) .  

Substituting the known Laurent expansions of el l iptical  functions igto 
(3.3) aud equating the coefficients with the same powers of u, for 
ao, azk, C2k, and K we obtain an infinite system of equations. In the 
general case (2.12), the calculat ion of coefficients represents a fairly 
laborious probletn. But, for square and hexagonal  arrays, the calculatious 

are considerably simplified, since for the former gs = 0, and for the 
latter g2 = 0 (see Appendix 1). To satify the boundary conditions with 
accuracy to second order ~ =/rt  2, in the case of a square array, we 
must determine the following coefficients: 

ao 2 \ n ] ' ao 24 ' 

c~. t a t '  c, ~gs ( 5  ' 
-~-0 = '-~f~ - - t " @ ~  ' ao ~ - \ ~ - - 1 3 t ~ ) ' /  

C 6 18~2 
a0 120n ' 

5t~go~ __ _ ~2t~ 
c-~0 = - - 2 1 n t  + ~ t ~  - 

(2o.--- Z '  (m @ in)-/). (3.4) 
fa, ?z 

From the relations 

0~ 0r 
v x =  Oy ' v ~ = - - - ~ x  

giving the stream function, it is not difficult to obtain 

O) �9 
q~ (u, ~) = 7- ~ ~c (u, a) du + �9 (a), (3.5) 

we choose ~'(fi) so that ~(n,[0 are reah  

1 ' 
�9 = U a ~ o l m { - - ~ l n ~ ( u ) =  i l n s ( u )  d u + ~ t ~ ( u ) d u +  

oo cO C2i, 

+ ~ ~ - -  a )] %:ao ~(v-~) (u) + )] ao ~(~" -~) (u) + k =1 I. = t  
oo 

+ (u) r ) (~) d~ + ~. (3.6) 
J 

The constant a 0 can be determined from the condition 

~(V~i,-- Vii) - -~  (it, --it) = ~U. (3 .7 )  

Hence, it follows that ,  with accuracy to terms of order ~ (see 
Appendix 2), 

t I n  8 
a0 2 + e - -  ~, 

"2 Ins  -[ 4 n + 

+ 16n 24.~g~ + 6 ~ = 0 . 7 3 9 .  (3.8) 

We find the expression for the stream function close to the surface 
of the cylinder, with accuracy to terms of order ~. For this, we 
restrict ourselves to the first terms of the Laurent series for functions 
entering (3.6) and substitute u = reiO/2w into the resulting expression. 

Thus, we arrive at the following result: 

aU sin 0 
~ ( r , O ) =  2(_~/21ns+8~,) • 

[ r  r ( e)a r 
X 2-gln~-+ I--'~" r -- (l -- e) -~ 

erS sin30 5g.. ( a s a rS)  
2a 3-e sinO 6rl ~" 2-~---3"~-q--~ �9 (3.9) 

Let us try to determine how the geometry of the array influences 
the velocity of the impinging flow and the velocity field close to the 
surface of the cylinder. With this aim we carry out an analogous 
ealcuIatiou for the hexagonal  array. In Eq, (3, 3) we set ~o = 1~r/3 and 
by the method mentioned above we find the unknown coefficients 

a2k and b2k. To satisfy the boundary conditions with accuracy to 
terms of order J ,  we must determine 

K 2gt ~ 
- -  - -  21n t  + o(tS), 

-~o =-~"---t" + ~ t 4  [ ' o ( t  s) 

a 4  _ t S g  ~ to  " _ 

ao , 24"* ] '  ao 

a8 -- 120n \ t g t " - -  2n / '  ao 7!2~ ' 

a ~ = 0 ,  c 4 = 0 .  (3.10) 

To find a 0 we use the condition 

~(1/2 eiV , J/2e-%)--~(it,  - - i t )=(oUsin~p.  (3.11) 

Here, in conformity with (3, 5), for ~O we have the expression 

*=Uaolm{- -O .  l n s ( u ) +  f l n s ( u ) d u  + 

Kg C' ~, n 

+--v<-) ~'~( )~z. + T g , , a - ' -  
oo co 

i,=l ;.=l 

oo 

l,=l 

We obtain (see Appendix 2l 

~lao = - -  ~/~ i n  s + e - -  ~/s V-7;  e ~ - -  k 

2~t 2 

~=  V ~ '  
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3 t K3 e.~ g g  
= -a- + s V----g - 2 - 7 -  - " 2s0~ 6 V ,~  

t 1 
+ ~ l n  Vg -- "-ff In ~ + 

I i m { e _ , h i =  in  ~ ( 1  e%{a)}  = 0 . 7 5 4 .  

+ 

(3.13) 

Thus, 

(r, O) -- 
Ua sin 0 X 

2(- -~/21nsq-e- -~/s  } / `gee-  s 

• 2 - a - l n ~ - +  1 - -  7 - - ( l - - e ) a  2a ~ 

] 4sin30 [a~ a ~ 3sin50 a n \ I t  
- -  0"128e= L s---fii-B-6-- \ '~- --  7~) + ~ ( ~  - ~ - ,  i'" 

(3.14) 

Comparing (3.9) and (3.14) with (1.2) it should be noted that the 
method of Kuvabara [1] enables us to determine the velocity of the 
impinging flow with accuracy to terms of order ~. Apparently, this 
quantity, with the accuracy just mentioned, depends only slightly 

on the geometry of the array. This can easily be seen by comparing 
formulas (8.9) and (3.14). 

As for the streamlines on the basis of the results obtained here, it 
is not difficult to establish that they depend essentially on the mutual 
arrangement of the cylinders. In this connection, attention should be 
paid to the considerable divergence, of the stream function for a 
square array from the Kuwabara formula in the case of a hexagonal 
array, a completely satisfactory agreement, with accuracy to terms of 
order r is observed. 

k is easy to see that both the velooity of the impinging flow and 
the streamlines found by Happel differe considerably from those 
obtained were to. This indicates an unsuccessful choice of boundary 
conditions in the cell method proposed by Happel. This is also con- 
firmed by the experimental data obtained by A. A. Kirsh and N. A. 
Pnks, which lead to the value y = 0. 75 + 0.02. 

As we know, the force acting on the cylinder is given [4]bythe 
formula 

Jr- iF  u ~ ~ (ip -F Fe)o) Yx clz, 

where F x and Fy are the x and y components of the force, and the 
integration is carried out over the surface of the cylinder. In the 
Stokes approximation [8] we have ip +#w = 2g fa(z), and consequentiy, 

Fx + iY~ = 4~tUao.  (3.15) 

Substituting the value % from (3.8) and (3.13) into (3.15), we 
obtain 

4~vU 
F x ~  _ ~ A t n e + e _ X '  (3.16) 

where k = 0. 739 for a square array, and k = 0. 754 for a hexagonal 
array. 

Expression (3.16), for the case of a square array,does not differ 
from the formula of Hasimoto [5], while for a hexagons1 array it 
virtually coincides with the result of Kuvabara [1]. 

Appendix 1. Calculation of gt and gs for hexagonal and square 
arrays. We use the known relations 

e~ + e~ + es = O, eles + e~ea + e ~ e a =  __~/~ g~O, 

e l e  z e  a = 1/4 ga 0' e x = p((01) , e s : p(ro=), 

e a = p (--COl--O~), 

g~0 = 60 E (2moot + 2nr = 6092 
rn, 

g3 ~ = t40 E (2mm~ -F 2nro2)-~ = 140~s. 
m. n 

From the definition of p (u). it follows directly that 

ea = - - q  (1 + e-=i~), 114 g2 = eI2 ( e-air 2 cos (p + I), 

~/4 g3 = --eft e -ai~ 2 cos cp. 

Thus, ga = 0 and g2 =4eI z for q =  rr/2; ga =0 andgs =4eta 

for ~o = rsf3. 
Using the expression for e i in terms of the theta-fnnctions [9], 

el = V,.~ r~2~-~ (Od + x~a4), v 

for the case of a square array we obtain the value e 1 = 0.69'7v z, while 
for a hexagonal array we have e I = 0..5981r 2 . 

Consequently, for a square array, gz ~ = 1. 944 7r41 ~or a hexagonal 
array, ga ~ =0.854rrs .  

Appendix 2. Calculation of In o ( i /2)  and ino (1/2 e 1/3i~r. From 
the definition of o (z, 2co l, 2wa), we obtain 

in a (Vo. e~'; 1, e iq') = i~p + In ~ 0/~.). 

Using the ex pr ession for o (z) in terms of the theta- functions [6], we 
find 

In a (i/~; t, i) = ~/s n -- In n + 0.008 

in ,z 0A; t, e '/' i=) = ~/s ~ - -  In r~ -- 0.0t7. 
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