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Abstract: The flow of aliquid in a system of paraliel cylinders arranged
perpendicularlyto the flow is considered for small Reynolds numbers.

Comparison of the exact solution for square and hexagonal arrays
with the solution obtained by means of the cell model established that
inthe case of an array the method proposed by Kuvabara [1] makes it
the flow velocity over a single cylinder to be correctly calculated.
However, the form of the streamlines depends essentially on the
geometry of the array.

1. The cell model and the Oseen solution; In [1,2], the problem
of the flow of liquid around a finite system of spatially uniformly
arranged cylinders is considered by means of the so-called cell model. If
each of the cylinders of radius o is surrounded by an imaginary coaxial
cylinder whose radius b is given by the relation 7b%n = 1 (n is the
number of cylinders per unit cross-sectionalarea), it is assumed that
the choice of the simplest, physically plausible boundary conditions
at the swrface of the outer cylinder does not significantly alter the
velocity field close to the inner cylinder. The groundlessness of such
an assutnption is obvious even in the comparison of the results from
[1,2].

In Kuabarsa' [1], in a reference system where the liquid at in-
finity is at rest, the vortex, as well as the radial component of the
velocity of motion of the liquid, vanish on the surface of a cylinder of
radius b. The last assumption means that the streamlines far from the
cylinder approximate circles. Concerning the first assumption, we
must point out that, for example, it is valid for a hexagonal arrayonlyat
six points on a circle of a radius equal to the half-period of the array.
This can be easily seen from considerations of symmetry.

The solution of the Stokes equations in dimensionless polar
coordinates r,6, with the origin of the coordinates on the axis of the
cylinder and the boundary conditions for the velocity components
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leads to the following expression for the stream function:
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where € = & /b* is the fraction of the volume occupied by cylinders
(r is the distance to the axis of the cylinder; © is the angle between the
radius vector r and U).*

Happel [2] assumes that in a reference system where the liquid at
infinity is at rest, the radial velocity component and the component of
the tensor of viscous stresses are both zero on the surface of a cylinder
of radius b. Thus, in areferencesystem connected withthe axisofsome
cylinder, the following boundary conditions

v,=vg=0for r=2a and vy, = Ucos 8 for r=15% (1.3)

must be satisfied.

* Because of a misprint formula (1.2) in [1] is represented in a
distorted form which was corrected in [3].
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In this case, the stream function
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Only in the limiting case as € = 0 do formulas (1.2), (1.4), and
the Oseen solution for the problem [4] of flow around a single cylinder
'lp (r, e) =

_ Uasing (

- 2
leads to the same streamlines(y = 1.78; k = UIZ vy v is the kinematic
viscosity.)
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Thus, the question concerning the choice of boundary conditions
in the cell method, purporting to give a correct description of the
velocity field close to the surface of the cylinder (although with
accuracty to terms of order &), still remains open. In this connection,
it is interesting to investigate the exact solution of the Stokes equations
for a doubly periodicregion. Inthe paper by Hasimoto [5], the problem
concerning the flow of a viscous liquid through a doubly periodic
system of cylinders passing through the nodes of a square array, is
considered with the application of Fourier series. We calculate force
acting on a cylinder when ¢ is small. But no expression is presented
in [5], for the velocity field close to the vicinity of the cylinder. This
is necessary, for example, for the calculation of the diffusion flow
on the surface of the cylinder.

The problem of the flow of a viscous liquid in a doubly periodic
system of cylinders is solved here by means of the theory of elliptic
functions {6]. The axes of the cylinders pass through the nodes of a
two-dimensional array; the periods of this array can be expressed by
the numbers 2w; and 2w, in the complex plane, where w; = @1 and
Wy = Iwzlei ¢ (the bar denotes the operation of complex conjugation).
The calculation of the velocity field for w; = |w2l is carried out for
the two particular cases: ¢ =m1/2 and ¢ =7 1/3. Here it is assumed
that the liquid flow velocity U, averaged across the section, is
parallel to one of the periods of the array.

2. The Stokes equations and their general solution. In a plane per-
pendicular to the axis of the cylinders we choose Cartesian (x,y)
coordinates so that the origin coincides with the center of some
cylinder, while the (real) x axis coincides with the flow direction.

Let vy and vy be the x and y compoinents of the liquid flow veloc-
ity vector; let U be the dynamic viscosity, and let p be the pressure.

The two-dimensional Stokes equations and the equation of con-
tinuity are written in the forin
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Onthe surface of each cylinder,
(2.2)

vx = vy = 0.

The rate of flow of liquid through the cell is assumed to be given:
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Eliminating the pressure p from Egs.(2.1), we obtain
Aoy = 0, wo = Bvy, [ 8z — dvyx [ By, (2. 4)



where W, Is the vorticity of the liquid, which in the case under
consideration is a real function of the coordinates (x,y) as well as of the

parameters U, w;, and 1 w2] . In conformity with the method of
functions of the complex variable (see [7], for example), we go
over to thenew variables z =x + i, z = x—iy and introduce the
complex velocity W = yx~ivy. Then Eqs. (2.4) are written in the
form

2we/0z 92 =0, Wo = 21 dw/dZ. {2.5)

An analogous method was used by Miyagi [8] in considering the
problem of viscous flow through an infinite, singly periodic array
of cylinders, whose axes lie in a plane parallel to the velocity U
of the impinging flow. From Eq. (2.5) it follows that wy = G(z) +
+ F(Z), where G(z) and F(z) are analytical functions of z and z,
respectively. Since wy = @y, where F(Z) =G(Z)= UE),

0 = Q(z) + G (. (2.6)

The velocity field is symmetric with respect to substitution of
z and z by-z and-2. Therefore, wy(z, %) = ~w(~z,~Z)and, hence,
Q(z) = ~Q(~z). From formula (1.5) we can see that the Laurent
expansion for wg, withsmallr, begins withterms of order a/r. Then, the
doubly periodic function wy is sought in the form of a series containing
the Weierstrass ¢ -function and its even - order derivatives. We write
Qz) in the form
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where ¢ (z,2W;, 2w,)is a {-functions with the period 2wy, Wy, np =

=§ (W) 1 i =1,2). In the region z « max (@i» | ws | the £~function can
be represented in the form of the series
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Here Qm = 2mw1 + 2nwsy; sumination is extended to all integer

values of m and n, with the exception of m=n=o

By virtue of the symmetry of the array relative to the plane y=0,
the quantities g, and g, are real, and consequently £(z) = &(z).
Furthermore, from the same considerations, it follows that the
coefficients ¢, and agk are real, since

wo (2, 2) = —wo (z, 2), @ (2) = —Q (2).
Thus
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From (2.8), with (2.5) taken into account, we find that
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where 0 (2z; 2wy, 2wy)is the Weierstrass sigma-function with the periods
2w; and 2w,, givenby the equation ((ii dz) In o(z) = {(z), while ®(z)
is an arbitrary analytic function of z. However, certain restrictions
associated with the double periodicity and limitationsof the velocity
field must be imposed on our arbitrary choice of &(z). To find a suit~
able &(z) we differentiate (2. 9) with respect to z. Then,
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Since

¥ (z + 204, 2 + 20;) = % (z, 3) (i = 1,2),

then
@ (z + 20, — D (5) =

= 20; A (2), D7 (2 + 205) — D' (2) = 25, A (3).

Hence
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Here Doy are constants. It is easy to show that &(z) chosen in such
amanner is unique, and accurate to an arbitrary odd elliptic function
having a single pole of any order above the second at points comparable
with z = 0.

Integrating (2.10), we obtain
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Here bgp, and K are constants.
Thus, the solution of the Stokes equations (2. 1) can be sought in
the form
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The coefficients ayk’, cgk', and K are determined from the boundary
conditions (2.2) and (2.3).

For the case in which JJZ ==W,, we can obtain an asymptotic
expression of the general solution (2. 12) where w, s |wy|s The result
thus obtained corresponds to the general form of the solution for the
singly periodic array of cylinders given in [8].

3. Square and hexagonal arrays. Let | wzl =Wy Ew, le., W=
= wel® The sylumetry requireinent of the velocity field relative to the
real axis leads to the fact that only the values ¢=7m2and ¢ = 73 are
permissible, i.e., when they correspond to arrays with elemental
cells in the form of a square or a rhombus with an angle of 80 degrees.
In these cases, directly from the definition of the &-function, we can
derive the relations

M=, e == e =

= e (3.1)
Since 1, wel®—n, w =12 from (3,1) we obtain
s Zw?
1= o = sin @
TI' 4w sin @ TR osng,
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T

8=0, T:—W' (3.2)

With this result taken into consideration, we write expression
(2. 12) as-follows:
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Elliptic functions of the new variable u = z/2w, allowing the
transformation from functions with period 2w, owel? 10 functions with
period 1, el? enter (3.3):

g (2 20, 20™ )=%C(u 1, €9),

lns(z; 20, 206 =1ns (; 1, €9).

The constants in formulas (2.12) and (3.3) are associated with .2
relations

g =ty /200 and ¢y, = ¢y [ (20)*.

Owing to the double periodicity of the velocity field, boundary
conditions (2.2) are adequately specified on the surface of any single
cylinder: w=0for]zl =aor 25 =d ie., forfi=t?ugt=al2w).

Substituting the known Laurent expansions of elliptical functions into

(3.3) and equating the coefficients with the same powers of u, for

Qg5 dols Caks and K we obtain an infinite system of equations. In the
general case (2,12), the calculation of coefficients represents a fairly
laborious problem. But, for square and hexagonal arrays, the calculations
are considerably simplified, since for the former g3 = 0, and for the
latter g, = 0 (see Appendix 1). To satify the boundary conditions with
accuracy to second order & = mt?, in the case of a square array, we
must determine the following coefficients:
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From the relations
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giving the stream function, it is not difficult to obtain
P (u, o)== Su (u, @) du—+ ¥ (@), (3.5)

we choose ¥(i1) so that ‘I’(ll,l-l) are real;

. -
w:Uagmlm{—LilnG(u)7—Slns(u)du—|——2~‘€3§3(u)du—[—

+ :—;-uﬁ,z—— i 1 aal; (24 ~1) (w) + Z ;(2 -2) (u) +
k=1 L=
L % ¢ @) ¢ K,
Ly Bg(u); (w)du + = } (3.6)

The constant a; can be determined from the condition

Y (faiy— i) = (it, —if) = oU. (3.7
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Hence, it follows that, with accuracy to terms of order € (see
Appendix 2),

16~ San T a0 = 0-739. (3.8)

We find the expression for the stream function close to the surface
of the cylinder, with accuracy to terms of order €. For this, we
restrict ourselves to the first terms of the Laurent series for functions
entering (3.6) and substitute u = rel®/2w into the resulting expression.

Thus, we arrive at the following result:

al sin §
P(r0) = 2(—1Ine —{-s‘-s——?»)
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Let us try to deterinine how the geometry of the array influences
the velocity of the impinging flow and the velocity field close to the
surface of the cylinder. With this aim we carry out an analogous
calculation for the hexagonal array. In Eq. (3.3) we set ¢ = 17/3 and
by the method mentioned above we find the unknown coefficients
agp and bok. To satisfy the boundary conditions with accuracy to
terms of order &° , we must determine
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To find ¢, we use the condition
P (Yo e®, Yy e ™) — P (it, — it) = ol sin . (3.13)

Here, in conformity with (3.5), for ¥ we have the expression
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We obtain (see Appendix 2)
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Comparing (3.9) and (3.14) with (1.2) it should be noted that the
method of Kuvabara[l]lenables us to determine the velocity of the
impinging flow with accuracy to terms of order &. Apparently, this
quantity, with the accuracy just mentioned, depends only slightly
on the geometry of the array. This can easily be seen by comparing
formulas (3. 9) and (3.14).

As for the streamlines on the basis of the results obtained here, it
is not difficult to establish that they depend essentially on the mutual
arrangement of the cylinders. In this connection, attention should be
paid to the considerable divergence, of the stream function for a
square array from the Kuwabara formula in the case of a hexagonal
array, a completely satisfactory agreement, with accuracy to terms of
order €, is observed.

It is easy to see that both the velocity of the impinging flow and
the sireamlines found by Happel differe considerably from those
obtained were to. This indicates an unsuccessful choice of boundary
conditions in the cell method proposed by Happel. This is also con-
firmed by the experimental data obtained by A. A. Kirsh and N. A.
Fuks, which lead to the value y = 0.75 + 0.02,

As we know, the force acting on the cylinder is given [4]bythe
formula

e+ iFy=§ (ip +uov) ds,

where Fy and Fy are the x and y components of the force, and the
integration is carried out over the surface of the cylinder. In the
Stokes approximation [8] we have ip +[w= 20 Q{z), and consequently,

Fye + 1F, = 4opUdo. (3.15)

Substituting the value @, from (3. 8) and (3.13) into (3.15), we
obtain

4wl

Fo= —¥ylnefe—A'

(3.16)

where A = 0.739 for a square array, and A = 0.754 for a hexagonal
array.

Expression (3.16), for the case of a square array, does not differ
from the formula of Hasimoto [5], while for a hexagonal array it
virtually coincides with the result of Kuvabara [1].

Appendix 1. Calculation of g, and gg for hexagonal and square
arrays. We use the known relations

e; + ey teg =0, e, T ey + epeg = —14 g0
eresey =11 £° e = p(o), ex= P (),

ey = P (—w;—a,),

g2% == 60 2 (2mw; + 2n0:) ™% = 60gy

m,

20 =140 D (2mooy 4 2ne0)0 = 140g;.

m, n
From the definition of p(u), it follows directly that

@ =1/om, Ysm, e = & P°,

eg= —eg {1 + 29, 1, g = e? (¢ 2 cos g + 1),

Yy gy = —e € ° 2 cos @.

Thus, g3 =0 and g, =4e;? for ¥ = 7/2; g =0 and g3 = 4¢3
for ¢ =7/3.
Using the expression for €¢; in terms of the theta-functions [9],

ey = Y 720 (B4 + 059, v

for the case of a square array we obtain the value ¢; = 0. 69'71r2, while
for a hexagonal array we have e; = 0. 598n?
Consequently, for a square array, gzo =1,944 7% for a hexagonal
array, g =0.8547°, .
Appendix 2. Caleulation of 1n ¢ (i/2) and 1no (1/2 2/ 3™, from
the definition of o (z,2w;, 2w,), we obtain

Ine (Y, e®; 1, &%) = i - 1n 6 (y).

Using the ex pression for o (z)in terius of the theta-functions [6], we
find
Ins (Y5 1, i) =sau—1nn 4 0.008
s (s 1, €47 =1 a0~ Ing—0.017.
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